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BACKGROUND

The objective of this work was to survey a number of liquid fuels and hazardous
materials (explosives, propellants, and pyrotechnics) to determine if there is significant
absorption over a reasonably wide region of the microwave spectrum. The emphasis
was placed on obtaining a measure of the absorption coefficients as a function of
frequency and not on high accuracy or precision. The results for one liquid fuel are
presented here. The procedure was to determine the in-waveguide reflection and
transmission coefficients as a function of frequency from the measured incident,
reflected, and transmitted powers after correction for waveguide and other losses. The
complex dielectric constant was obtained from these coefficients and the absorption
coefficient calculated.

Measurements were made over the frequency range 2.5 to 18 GHz by the use
of two sizes of double-ridge waveguide to cover the ranges 2.5 to 7.5 and 7.5 to 18
GHz. Step scanning at 0.1 and 0.25 GHz intervals was used for the low frequency
range and the high frequency range respectively, and the incident, reflected, and
transmitted powers were recorded at each frequency. A complete description of the
apparatus is given elsewhere (refs 1 and 2). The sample cell consisted of a verticle
waveguide section 30.45 cm (12 in.) in length bounded on the bottom by a thin
(0.0076 cm) mylar support window for the liquid fuel, The top of the cell was
connected to the microwave source by means of a bidirectional coupler for
measurements of the incident and reflected powers, Pi and P,, while the bottom of the
cell was connected to an identical coupler for measurement of the transmitted power,
P1. This coupler was terminated in its characteristic impedance. The thin mylar
support window was placed across the wavegulde normal to the propagation direction
and sandwiched between the waveguide section used for the sample holder and the
bidirectional coupler used to measure the transmitted intensity. Therefore, the mylar
support window Interrupted the continuity of the wavegulde. All powers were
corrected for waveguido and other losses and calibration differences (refs 1 and 2).
By conservation of energy

Pi - Pr + P1 + Pa (1)

where Pab is the power absorbed at the sample and cell. By division of equation (1) by
P1

1 =R+T+A (2)

where R = PrIPi and T = Pt/P, are the power reflection and transmission coefficients and



A = Pab/Pi = 1- (R + T) (3)

is the normalized absorbed power.

Expressions for trhe power refelction and transmission coefficents, R and T, for
normal incidence on a plane parallel slab of dielectric in air in a waveguide were
derived using the techniques given by Ramo and Whitnnery (ref 3). These are

R = r12 2[e2ad+e-2oL-2Cos(2Pd)] / [e2ad+r 1 24e-2ad-2r 1 22Cos(2•j12-2nd)] (4)

and

T = t122t212 / [e2ad+r 24e-2ad-2 r122COs(2c1 2-2f0d)] (5)

where d is the dielectric slab thickness in the direction of propagation and

P12 r12ej012 = (Z2-Zl) / (Z2+Zl) (6)

"%12 = t12ejqM2 = 2Z2 / (Z2+Zl) (7)

"c21= t2jej(p12 = 2Z, / (Z2+Z1) (8)

o2 W(2•fOp '2)1t2( 1-(f Jf)2/Cj} 1/2(1 ,[(s"le') 21[1-(fOf)2/c]2] 1/2.1}1/2 (9)

and

= 2X = 2df(pococ'2)1/2(1-(fdf)2E'} I/2{ l+[(I"/SI)2/[1-(fQ'f) 212iE']l/2+1)1/2 (10)

c' and e" are the real and imaginay parts of the complex dielectric constant; p. and Co
are the permeability and permlttivity of vacuum (air); f, is the waveguide cutoff

frequency in air; and X is the wavelength in th-, waveguide in the dielectric (ref 3).

Equations 4 and 5 are valid when the ."" .gu~' section after the sample
(bidirectional coupler) is terminated in its characteristic impedance Su that there is no
reflected wave in this section. Z,, amd Z2 are the in-waveguide impedances of vacuum
(air) and the dielectric, respectively, and are given by

ZI = WClo/ 11- (fO/f)I])112(1)

Z2 = (pdoej '1-JI."/C' [ 1-(fj/f)2/E') 1/2  (12)
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P12 and T12 are the field reflection and transmission coefficients for normal incidence
on the dielectric slab when conditions are such that there is no reflected wave in the

dielectric. T21 is the similar transmission coefficient for a wave in the dielectric incident

on air. a and P3 are the real and imaginary parts of the complex field propagation
constant in the dielectric defined by

E = Eoe-(¢a- j1)z (13)

where z is the distance in the direction of oropagation. a is therefore the field

attenuation or absorption coefficient, and P is 2-g times the reciprocal wave length (eq
10), both in the dielectric slab. Born and Wolf give relationships similar to equations 4
and 5 for out-of-waveguide conditions (ref 4).

Significant simplifications of the above equations are possible for low-loss

materials, i.e., when e/c' ,, 1. This is the case for the liquid fuel under considerations
and the appropriate approximations were made in the calculations of R and T.

RESULTS AND DISCUSSION

Measurements have been made on two liquid fuels, liquid water, eight
hazardous materials, and two polymeric materials, but because of space limitations,
only the results for one liquid fuel (Diesel 2) are presented here. The results for liquid
water and the other materials will be published elsewhere (ref 1).

Measurements were made of Pi, Pr, and P, for the empty cell and the reflection
and transmission coefficients calculated. Typical reflection coefficient results are given
In figure la for the low frequency range. Similar results were obtained for the high
frequency range. The peaks in the reflection coefficient spectra are due to the
discontinuity in the wavegulde caused by the thin mylar support window. This was
verified by measurements for the empty waveguide, i.e., without the mylar and by
measurements for plastic samples which were machined to fit snugly into the
waveguide and so used without the mylar. Calculations were also made of the
reflection coefficients for the mylar alone. These calculations indicate that the
reflection coefficient for the thickness of mylar used Is negligible over the whole
frequency range used for these studies. Peaks of this type were also found in the
reflection and transmission spectra for liquid samples in the cell (fig. 1 b). No attempt is
made here to correct the results for these peaks due to the discontinuity in the
waveguide. However, in fitting the calculated reflection and transmission coefficients
to the experimental coefficients allowance was made for the effects of the discontinuity.
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The experimentally determined reflection coefficient for the fuel Diesel 2 is
given as a function of frequency in figure lb for the low frequency range. Somewhat
similar results were obtained for the high frequency range (not shown). The maxima
and minima are due to interference effects and the change in wavelength with
frequency. The effect of the mylar window and so the discontinuity in the waveguide
on the reflection coefficient of the sample can be clearly seen by a comparison of
figures la and lb. Large peaks in the reflection coefficient of the sample in the cell
occur at approximately the same frequencies as the peaks in the reflection coefficient
of the empty cell.

Also shown in figure lb is the calculated reflection coefficient with C' and '"/C"
chosen as a function of frequency so that the differences between the calculated and
experimental reflection and transmission coefficients are minimized. The mylar
window and the discontinuity are not considered in the calculations. However,
calculations which were made for the sample and the mylar but without the
discontinuity indicate that the mylar alone has neglibible effect on the total reflection
coefficient. Measurements were made every 0.1 GHz, and the calculated reflection
coefficient of figure lb is also given for com•parison purposes only at every 0.1 GHz at
the same frequencies as those used in the measurements.

An examination of figure lb indicates excellent agreement between the
frequencies of the maxima and minima of the experimental and calculated reflection
coefficients. In addition, the amplitudes of the experimental and theoretical coefficients
are in rather good agreement except at frequencies corresponding to the frequencies
of the peaks of the empty cell as given in figure la. The initial value of C' was
estimated from the separation of the maxima and minima and was then adjusted as a
function of frequency to obtain the best match between the positions of the maxima
and minima of the experimental and theoretical reflection coefficients (ref 1)

The transmission coefficient data and calculations are not presented. C"ic' was
determined by using the normalized absorbed power, A, of equation 3. The calculated
values of A were adjusted to the experimental values for the sample at selected
frequencies by the choice of O:/c at each frequency. A polynomial was then fitted to the
values of c"/c' versus frequency and used to calculate A as a function of frequency.
The final values of P' and e'"/t' at each frequency were selected to minimize the
differences between the experimental and theoretical values of R and A.

C' was found to decrease with increasing frequency between 2.5 and
approximately 8.5 GHz and then to remain constant between 8.5 and 18 GHz within
experimental error. 6'V4 was found to decrease with increasing frequency over mc.t of
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the frequency range but to plateau at about 15 GHz with indications of an increase
with further increases in frequency. These results indicate that there is a relaxation
process giving a maximum of absorption at a frequency below the frequency range of
measurement and further that there is another relaxation process with an absorption
maximum above the frequency range of measurement. The dielectric constant results
will be discussed in detail elsewhere (ref 1).

The out-of-waveguide absorption coefficient for Diesel 2 was calculated using

equation 9 with fc = 0 and the experimentally determined values of e' and •'•' and is
given in figure 2. This coefficient increases with frequency throughout the range of
measurement and is small.

SUMMARY

Measurements were made of the in-waveguide incident, reflected and
transmitted powers of liquid fuel between 2.5 and 18 GHz, corrections were made for
waveguide and other system losses, and reflection and transmission coefficients
calculated. The reflection and transmission coefficients indicate strong interference
effects. Expressions were obtained for the in-waveguide theoretical reflection and
transmission coefficients in terms of the complex dielectric constant, the waveguide
cutoff frequency, and the sample thickness. The real part of the dielectric constant was
then chosen as a function of frequency so that the maxima and minima of the
calculated reflection spectrum matched those of the experimental spectrum and further
minimized the differences between the two reflection spectra. The loss tangent was
chosen as a function of frequency so as to match the calculated normalized power loss
to the experimental values. The out-of-waveguide absorption coefficient was then
obtained as a function of frequency from these results. The absorption coefficient is
small and increases with frequency.
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Figure 1. (a) Measured reflection coefficient of the empty sample cell.
(b) Measured reflection coefficient of the sample (Diesel 2

fuel) and cell and the calculated reflection coefficient
of the sample.
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Figure 2. Absorption coefficient versus frequency for Diesel 2 fuel
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